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ON MESH–INDEPENDENT CONVERGENCE OF AN INEXACT

NEWTON–MULTIGRID ALGORITHM

PETER N. BROWN, PANAYOT S. VASSILEVSKI, AND CAROL S. WOODWARD

Abstract. In this paper we revisit and prove optimal order and mesh–independent convergence
of an inexact Newton method where the linear Jacobian systems are solved with multigrid
techniques. This convergence is shown using Banach spaces and the norm, max{‖ · ‖1, ‖ · ‖0,∞},
a stronger norm than is used in previous work. These results are valid for a class of second
order, semi–linear, finite element, elliptic problems posed on quasi–uniform grids. Numerical
results are given which validate the theory.

1. Introduction

In this paper we revisit the problem of mesh independence and optimal order convergence
of inexact Newton MG (multigrid) methods for solving finite element, second order, nonlinear,
elliptic equations. Previous work has shown mesh-independent convergence of exact Newton
methods for such equations discretized by finite differences [1, 2]. In this work, we relax the need
for an exact Newton method and show mesh-independent convergence for an inexact Newton
method in which multigrid techniques are used to solve the linear Jacobian systems. This work is
valid for these equations discretized by finite element methods on quasi–uniform grids. In order
to prove such a convergence result, one needs to uniformly control the maximum (L∞) norm of
the iterates with respect to the mesh parameter h 7→ 0. That is, classical convergence results,
such as in [5], do not apply directly. Alternatively, one could exploit sophisticated Lp–estimates
as in [15], see also [3]. To simplify the presentation we present our results for a model semi–linear
second order elliptic problem which allows us to avoid the Lp estimates. In what follows ‖ · ‖s
stands for the Sobolev space Hs–norms, and H1

0 = H1
0 (Ω) is the subspace of H1 = H1(Ω) for a

given polygonal domain Ω with vanishing traces on ∂Ω.
The model problem of interest has the form: Find u ∈ H1

0 (Ω) ∩ L∞(Ω) which satisfies

(1.1) (L(u), ϕ) ≡
∫

Ω

[a(x)∇u · ∇ϕ+ f(x, u)ϕ] dx = 0, for all ϕ ∈ H1
0 (Ω),
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where the nonlinear function f is sufficiently smooth, and the coefficient function a = a(x) is
bounded with a(x) ≥ a0 = const > 0 in Ω. The coefficient a can also be a symmetric positive
definite matrix (aij(x)). Later for simplicity we will assume that f(x, u) = −f − b(u) where
f ∈ L2(Ω) and bu(v) ≤ 0 for v ∈ L∞(Ω).

The existing convergence proofs (mostly their assumptions) for inexact Newton methods (cf.
[4], [10], [13], [16]) do not apply directly, since we need convergence in a stronger norm than
is typically considered. For example, in [4] a Hilbert space setting is used, and it is assumed
that the nonlinear operator has a Jacobian that is Lipschitz continuous in a strong norm (as a
mapping from ‖ · ‖1 7→ ‖ · ‖1 in the particular applications). We instead use a Banach space
setting and incorporate the L∞ norm of the functions in the norm of the nonlinear operator
range space. We note that for the above model semi–linear elliptic problem, one can actually
prove convergence of inexact Newton MG methods in H1 (without using maximum norms) by
modifying the argument found in [11]. However, we are able to prove more, namely, optimal
convergence in the stronger norm, max{‖ · ‖1, ‖ · ‖L∞

}, exploiting only the Banach (and not
Hilbert) space setting.

The purpose of this paper is to make the statement of assumptions and their verification in
proper norms that guarantee convergence of a modified inexact Newton MG algorithm inde-
pendent of mesh parameter and with optimal work per iteration. The results we prove show
that if one applies a W–cycle with sufficiently many smoothing iterations for computing inexact
Newton directions the resulting method converges linearly with mesh-independent rate of con-
vergence and optimal cost per iteration. The same results hold for a cascadic multigrid iteration
(a coarse–to–fine cycle with conjugate gradient smoothing and where the number of smoothing
iterations grows geometrically from the fine to coarse levels). Actually, our numerical experi-
ments for some model test problems show that even a standard V–cycle MG provides optimal
and mesh–independent convergence of the resulting inexact Newton MG method.

The remainder of the paper is as follows. In Section 2 we formulate a fairly general modi-
fied inexact Newton algorithm, state abstract assumptions, and prove its local convergence. In
Section 3 we study the discretized nonlinear problem and in the next section verify the assump-
tions for our model second order semi–linear elliptic problem. In Section 5 we prove that one
sufficiently accurate, cascadic MG–cycle or W–cycle, MG step can be applied to compute the
inexact Newton iterate. Thus the cost per iterate is optimal (of order of the number of degrees
of freedom). The following section contains some numerical illustrations of the convergence be-
havior of the method. The last section makes some concluding remarks and extensions. Finally,
in an Appendix we summarize some results regarding MG convergence of the residuals (not the
iterates). The presented analysis assumes full (H2) regularity of the linearized second order
elliptic problem.

2. Problem formulation

Consider the nonlinear system

(2.1) F (u) = 0,
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where F : X 7→ Y , X and both Y are Banach spaces. We will denote their norms with the same
symbol ‖ · ‖ since it will be clear from the context which one is actually meant. The induced
operator norms for mappings between X and Y and vice versa will also use the same symbol ‖·‖
without causing any ambiguity. In our application the spaces X = Xh and Y = Yh will depend
on a mesh parameter, but their norms will be induced from an infinite dimensional space (hence
will be mesh independent). Our approach then will be to verify the assumptions stated below
with mesh–independent constants. This will imply mesh–independent convergence at the end.
The key part in the presented theory is that one needs to construct inexact Newton iterates (see
Algorithm 2.1 below) where the “inexactness” is controlled by a mesh–independent tolerance η
achievable with an optimal cost. We later show this tolerance is achieved with optimal cost for
certain MG cycles (see Section 5). Another key point in the theory is the assumption on the
initial iterate; namely, that it is feasible to find an initial iterate which is close to the discrete
solution in a stong (residual) norm and provide a constructive (practical) algorithm to compute
it. This is verified in Theorem 5.1.

We now state the main assumptions:

Assumption 2.1.

(A1) there is u? ∈ X such that F (u?) = 0;
(A2) for any u in a neighborhood of u? there is a linear mapping F

′

(u) : X 7→ Y such that
for any small ε > 0 there is a δ > 0 for which

‖F (u)− F (u?)− F
′

(u?)(u− u?)‖ ≤ ε‖u− u?‖

whenever ‖u− u?‖ < δ.
(A3) the derivative F

′

(u) is invertible and (F
′

(u))−1 is a bounded linear operator Y 7→ X , for
any u in a neighborhood of u?, that is,

(2.2) ‖(F ′

(u))−1‖ ≤ µ,

for some constant µ. In addition, we assume that the mapping (F
′

(u))−1 is continuous
in u (in a neighborhood of u?). That is, for any ε > 0 there is a δ > 0 such that

‖I − F
′

(u?) (F
′

(u))−1‖ < ε,

and

‖I − (F
′

(u))−1 F
′

(u?)‖ < ε,

whenever ‖u− u?‖ < δ. We note that implicit in this assumption is the fact that F
′

(u)
is one-to-one and onto as a mapping from X 7→ Y whenever ‖u− u?‖ < δ.

We consider the modified inexact Newton algorithm given below.

Algorithm 2.1 (Modified Inexact Newton method).
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Consider the sequence of iterates {uk} generated by

(2.3)

(i) choose an initial guess u0;
(ii) For k = 0, 1, . . . until convergence

- find an sk such that
F

′

(u0)sk = −F (uk) + rk, where ‖rk‖ ≤ η‖F (uk)‖;
- set uk+1 = uk + sk.

One may also assume:

(A4) the residuals rk satisfy for an η < 1, (in addition to ‖rk‖ ≤ η‖F (uk)‖), the estimate

(2.4)
∥∥∥(F ′

(u?))−1rk
∥∥∥ ≤ η

∥∥∥(F ′

(u?))−1F (uk)
∥∥∥ .

The question is when will such an iteration converge? We show the following result.

Theorem 2.1. Assume assumptions (A1)–(A3) hold and let η, t satisfying 0 ≤ η < t < 1 be
given. Then there is an ε > 0, such that, if ‖u0 − u?‖ < ε, then the sequence of iterates {uk}
generated by (2.3) converges to u?. Moreover, the convergence is linear in the sense that

(2.5) ‖uk+1 − u?‖? ≤ t‖uk − u?‖?,
where ‖v‖? = ‖F ′

(u?)v‖ provided that the initial iterate u0 satisfies the estimate
(2.6) µ‖F ′

(u?)(u0 − u?)‖ < ε,

where µ is from (2.2). If assumption (A4) also is satisfied, then the following convergence
estimate in the original norm holds:

(2.7) ‖uk+1 − u?‖ ≤ t‖uk − u?‖.
Proof. The proof follows the lines of the proof given in [10] (for X = Y) and [16]. From (A3)
and (2.2), we have

(2.8) ‖v‖ ≤ µ ‖v‖?, for all v ∈ X .
Since 0 < η < t, there is a γ > 0 such that

(2.9) γ + µγ(γ + 1) + (γ + 1)η(1 + µγ) < t.

Based on the properties of F
′

and (F
′

)−1, (A2) and (A3), now choose an ε > 0 sufficiently
small such that

(2.10) ‖I − (F
′

(v))−1F
′

(u?)‖ < γ,

(2.11) ‖I − (F
′

(u?))(F
′

(v))−1‖ < γ, and

(2.12) ‖F (v)− F (u?)− F
′

(u?)(v − u?)‖ ≤ γ‖v − u?‖,
all three estimates holding if ‖v − u?‖ < ε.
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Assume ‖u0− u?‖ < ε. The proof proceeds by induction. Since F
′

(u0) is one-to-one and onto
by assumption (A3), the system F

′

(u0)s = −F (u0) has a solution and it is possible to find an
s0 such that F

′

(u0)s0 = −F (u0) + r0 with ‖r0‖ ≤ η‖F (u0)‖. We then define u1 by

u1 = u0 − P−1F (u0) + P−1r0,

where P = F
′

(u0). Since ‖u0 − u?‖ < ε, P−1 exists and (2.10) (2.11) as well as (2.12) hold for
v = u0.

Next,

u1 − u? = u0 − u? − P−1F (u0) + (P−1 − (F
′

(u?))−1)r0 + (F
′

(u?))−1r0.

Replace F (u0) by F
′

(u?)(u0 − u?) +
[
F (u0)− F (u?)− F

′

(u?)(u0 − u?)
]
. Then

(2.13)
u1 − u? = u0 − u? − P−1F

′

(u?)(u0 − u?)− P−1
[
F (u0)− F (u?)− F

′

(u?)(u0 − u?)
]

+
(
P−1 − (F

′

(u?))−1
)
r0 + (F

′

(u?))−1r0.

So

F
′

(u?)(u1 − u?) =
[
I − F

′

(u?)P−1
]
F

′

(u?)(u0 − u?)

−F ′

(u?)P−1
[
F (u0)− F (u?)− F

′

(u?)(u0 − u?)
]

+
(
F

′

(u?)P−1 − I
)
r0 + r0.

Therefore

(2.14)
‖u1 − u?‖? ≤ ‖I − F

′

(u?)P−1‖‖u0 − u?‖? + ‖F
′

(u?)P−1‖ γµ ‖u0 − u?‖?
+‖F ′

(u?)P−1‖ ‖r0‖
≤ γ ‖u0 − u?‖? + µγ (γ + 1) ‖u0 − u?‖? + (γ + 1)‖r0‖.

Since

‖r0‖ ≤ η‖F (u0)‖
≤ η

(
‖F (u0)− F (u?)− F

′

(u?)(u0 − u?)‖+ ‖F ′

(u?)(u0 − u?)‖
)

≤ η (γ‖u0 − u?‖+ ‖u0 − u?‖?)
≤ η (1 + γµ)‖u0 − u?‖?,

we have from (2.14) that

‖u1 − u?‖? ≤ [γ + µγ(γ + 1) + (γ + 1)η(1 + µγ)] ‖u0 − u?‖?
≤ t‖u0 − u?‖?.
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Next, from (2.13) and if we assume (2.4), one has

‖u1 − u?‖ ≤ ‖I − P−1F
′

(u?)‖‖u0 − u?‖
+‖P−1F ′

(u?)‖
[
‖(F ′

(u?))−1‖‖F (u0)− F (u?)− F
′

(u?)(u0 − u?)‖
+‖(F ′

(u?))−1r0‖
]

≤ [γ + µ(1 + γ)γ] ‖u0 − u?‖+ (1 + γ)η ‖(F ′

(u?))−1F (u0)‖
≤ [γ + µ(1 + γ)γ] ‖u0 − u?‖

+(1 + γ)
(
η µ‖F (u0)− F (u?)− F

′

(u?)(u0 − u?)‖+ η ‖u0 − u?‖
)

≤ [γ + µ(1 + γ)γ + η(µγ + 1)(1 + γ)] ‖u0 − u?‖
≤ t‖u0 − u?‖ < ε,

using the fact that

(F
′

(u?))−1F (u0) = (F
′

(u?))−1[F (u0)− F (u?)− F
′

(u?)(u0 − u?)] + (u0 − u?).

However, in some cases we cannot ensure the estimate (2.4) with an optimal cost. Thus, only
‖rk‖ ≤ η ‖F (uk)‖ is guaranteed. In such a case we have assumed that the initial iterate satisfies
estimate (2.6) (in addition to ‖u0 − u?‖ < ε). The latter estimate guarantees that all iterates
uk, k ≥ 1, are in the ball ‖uk − u?‖ < ε and the induction argument works. Indeed,

‖uk − u?‖ ≤ µ ‖uk − u?‖? ≤ µtk‖u0 − u?‖? ≤ µ‖u0 − u?‖? < ε.

Hence, in either case, (2.10)–(2.12) hold for v = uk, k > 0, and the proof can be completed by
induction. ¤

Corollary 2.1. One can rewrite step (ii) of Algorithm 2.1 in the following more traditional
form:

(2.15) F
′

(uk)sk = −F (uk) + r̂k,

where r̂k = rk +
(
F

′

(uk)− F
′

(u0)
)
sk. Based on Theorem 2.1 one has the estimate

‖r̂k‖ ≤ ‖rk‖+ ‖
(
F

′

(u?)− F
′

(u0)
)
sk‖+ ‖

(
F

′

(uk)− F
′

(u?)
)
sk‖

≤ ‖rk‖+ 2γ‖F ′

(u?)sk‖
≤ ‖rk‖+ 2γ‖F ′

(u?)
(
F

′

(u0)
)−1 ‖ ‖F ′

(u0)sk‖
≤ ‖rk‖+ 2γ(1 + γ) ‖F ′

(u0)sk‖
= ‖rk‖+ 2γ(1 + γ) ‖rk − F (uk)‖
≤ (η + 2γ(1 + γ)(η + 1)) ‖F (uk)‖.

That is, for sufficiently small γ one can guarantee an estimate of the form

(2.16) ‖r̂k‖ ≤ η̂ ‖F (uk)‖,
with an η̂ < 1. Note that the argument goes both ways. If one computes inexact Newton
directions sk based on (2.15) such that (2.16) holds, then it is equivalent to think that sk has
been computed as in step (ii) of Algorithm 2.1 with an η = η̂ + 2γ(1 + γ)(η̂ + 1) assuming that
uk and u0 are sufficiently close to u? such that (A3) holds. Therefore, Theorem (2.1) holds with
the more traditional version of the inexact Newton method (that is, inexact Newton direction
computed as in (2.15) satisfying (2.16)).
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3. Application to second order semi–linear elliptic problems

We will be interested in the following model second order semi–linear elliptic problem: Find
u such that

(3.1) Lu ≡
∑

i,j

− ∂

∂xi

(
aij(x)

∂u

∂xj

)
− b(x, u) = f(x), in Ω ⊂ Rd,

subject to homogeneous Dirichlet boundary conditions u = 0 on ∂Ω. We denote the solution to
(3.1) in what follows by u?.

We define L : V ≡ H1
0 (Ω) 7→ V ′

= H−1(Ω). Let Vh ⊂ V be a finite element space of continuous

piecewise polynomials such that ∪{Vh, h ≤ h0} = V . We also assume that the corresponding
mesh is quasi-uniform, which implies certain inverse inequalities for the finite element functions.
In particular, for a uniform constant C, we will have ‖v‖1 ≤ Ch−1‖v‖0 for all v ∈ Vh.

The Galerkin operators induced by L on Vh, denoted by Av − b(v), are defined as follows

(Av − b(v), ϕ) =
∑

i,j

(ai,j(x)
∂v

∂xi

,
∂ϕ

∂xj

)− (b(x, v), ϕ), for all v, ϕ ∈ Vh.

Similarly, the Jacobian of Av− b(v) at v, a linear operator denoted by A− bu(v) (bu(v) ≡ ∂b(v)
∂u

),
is defined by

(Aξ − bu(v)ξ, ϕ) =
∑

i,j

(ai,j(x)
∂ξ

∂xi

,
∂ϕ

∂xj

)− (
∂b(x, v)

∂u
ξ, ϕ), for all ξ, ϕ ∈ Vh.

The ellipticity assumption means that the principal part, A, is H1–bounded and coercive; that
is, for two uniform constant 0 < a0 ≤ a1 the following estimates hold,

(3.2)
a0‖ψ‖21 ≤ (Aψ, ψ), for all ψ ∈ H1

0 (Ω),
(Aψ, ϕ) ≤ a1‖ψ‖1‖ϕ‖1, for all ψ, ϕ ∈ H1

0 (Ω).

This holds if the coefficient matrix (aij(x)) is symmetric, positive definite, and bounded from
above uniformly in Ω.

The discrete counterpart of (3.1) reads: find uh ∈ Vh such that

(Lhuh, ϕ) ≡ (Auh − b(uh), ϕ)(3.3)

≡
∑

i,j

(ai,j(x)
∂uh

∂xi

,
∂ϕ

∂xj

)− (b(x, uh), ϕ) = (f, ϕ), for all ϕ ∈ Vh.

In the notation of the previous section, the discrete nonlinear problem (3.3) can be rewritten as

(3.4) Fh(uh) ≡ Lh(uh)−Qhf = 0,

where Qh : L2(Ω) 7→ Vh is the L2–projection. In what follows we denote the solution of (3.4)
by u?

h. The derivative F
′

h(v), v ∈ Vh, is defined variationally as

(F
′

h(v)ψ, ϕ) ≡ (Aψ − bu(v) ψ, ϕ), for all ψ, ϕ ∈ Vh.
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We next define the Banach spaces X and Y . Note that these depend on the mesh parameter
h 7→ 0, and that the respective nonlinear operator and its derivative depend on h. To indicate
this we use an h subscript, i.e., F = Fh and F

′

= F
′

h. We note that F
′

h = QhF
′

when restricted
to Vh.

Definition 3.1 (Discrete Banach spaces).

• X = Vh with a norm ‖ · ‖, such that ‖ψ‖ ≤ C‖F ′

(u?
h)ψ‖0 for any ψ ∈ Vh. We will later

show that under certain regularity assumptions (see below (3.1)), as is well–known, one
has with a mesh–independent constant C,

max{‖ψ‖1, ‖ψ‖L∞
} ≤ C‖F ′

h(u
?
h)ψ‖0,

so the latter norm is one possible candidate.
• Y = Vh equipped with ‖ · ‖ = ‖ · ‖0.

Above, ‖ · ‖s stands for the Sobolev space Hs–norms, and L∞ on Vh is actually the maximum
norm (since the functions in Vh are continuous).

If one chooses ‖ψ‖ = ‖F ′

(u?
h)ψ‖0, for a norm in X , it is obvious that

µ ≡ max{‖F ′

(u?
h)‖, ‖(F

′

(u?
h))

−1‖} = 1.

Note that this is a mesh–dependent norm. In what follows, however, we will use the (mesh–
independent) norm in X

‖ψ‖ ≡ max{‖ψ‖1, ‖ψ‖∞}.
Assumption 3.1. We assume that the nonlinear boundary value problem has a solution u ∈
H1
0 (Ω) ∩H2(Ω). The latter implies that u ∈ L∞(Ω) as well.

In addition, we assume:

(i) Ω is a bounded convex polygon and the principal linear elliptic part A of L is H 2–regular;
that is, for any g ∈ L2(Ω) the solution of the linear boundary value problem

(Aw, v) = (g, v) for all v ∈ H1
0 (Ω),

satisfies the a priori estimate for a constant CR > 0 (independent of the r.h.s. g),

‖w‖2 ≤ CR‖g‖0.
(ii) The function b(x, u) is continuously differentiable; that is, ∂b(x, v)

∂u
exists near the exact

solution u of (3.1) and is uniformly Lipschitz in x ∈ Ω as a function of v ∈ R (in a
neighborhood of u). The Lipschitz constant is denoted by L in what follows.

(iii) The function |∂b(x, u)
∂u

| is bounded in Ω.

(iv) Finally, we assume that ∂b(x, v)
∂u

≤ 0, again, in a neighborhood of u.

Lemma 3.1. Under the assumptions (i)–(iv), the discrete problem (3.4) has a unique solution
u?
h. Moreover the following error estimates hold:

‖u? − u?
h‖1 ≤ Ch‖u‖2, ‖u? − u?

h‖∞ ≤ Chα‖u‖2,
for some positive α (< 1).
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Proof. The proof is based on a standard argument (see, Appendix I). ¤

Next, we prove some auxiliary results.

Lemma 3.2. Consider the linear boundary value problem, for a given y ∈ L∞(Ω) such that
‖y − u?‖∞ ≤ δ for δ > 0,

(Aw − bu(y)w, v) = (g, v), for all v ∈ H1
0 (Ω).

Then, w ∈ H2(Ω) ∩H1
0 (Ω) and the following a priori estimate holds

‖w‖2 ≤ Cδ‖g‖0, Cδ = CR(1 + Lδ + ‖bu(u?)‖∞).

Proof. It is clear that with c0 : c0‖w‖21 ≤ (Aw, w) and cF the Poincaré constant cF‖w‖20 ≤ ‖w‖21,
the following obvious estimate holds (recall that bu(y) ≤ 0),

c0cF‖w‖20 ≤ (Aw, w) ≤ (g, w) ≤ ‖g‖0‖w‖0,
that is,

‖w‖0 ≤ C‖g‖0,
with a uniform constant C. Then, since w solves the linear problem

Aw = q ≡ g + bu(y)w ∈ L2(Ω),
using its regularity, we obtain the estimate,

‖w‖2 ≤ C‖g + bu(y)w‖0
≤ C [‖g‖0 + ‖bu(y)‖∞‖w‖0]
≤ C [1 + ‖bu(y)‖∞] ‖g‖0.

Next, we have assumed that ‖y − u?‖∞ < δ, for a given δ, so that

‖bu(y)‖∞ ≤ L‖y − u?‖∞ + ‖bu(u?)‖∞
≤ Cδ.

The constant Cδ depends on L, the Lipschitz constant of bu(·), and on the L∞ bound of bu(u
?),

all fixed in our application. ¤

Lemma 3.3. Let v ∈ Vh be such that ‖v − u?
h‖ ≤ δ for u?

h the exact solution of the discrete
nonlinear problem (3.4). Then the solution of the discrete linear problem: given r ∈ L2(Ω) find
ψ ∈ Vh such that

(F
′

h(v)ψ, ϕ) ≡ (Aψ − bu(v)ψ, ϕ) = (r, ϕ), for all ϕ ∈ Vh.

satisfies the a priori estimate,

max{‖ψ‖1, ‖ψ‖∞} ≤ C‖r‖0,
with a uniform constant C.
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Proof. Note that based on Lemma (3.1) u?
h exists and approximates the continuous solution u?

(for sufficiently small h). Then by assumption ‖v − u?
h‖ < δ. So, ‖v − u?‖ < δ1 ≡ δ +Chα‖u‖2.

That is, v is in a small neighborhood of u?. For δ1 small enough (that is, for δ and h small
enough) assumptions 3.1 (i)–(iv) hold.

The first estimate ‖ψ‖1 ≤ CF

c0
‖r‖0 is standard, using the ellipticity assumption (3.2), bu(v) ≤ 0

(assumption (iv)) and the Poincaré inequality; that is,

a0‖ψ‖21 ≤ (Aψ, ψ)

≤ (F
′

h(v)ψ, ψ)
= (r, ψ)
≤ ‖r‖0‖ψ‖0
≤ CF‖r‖0‖ψ‖1.

Consider now the second order linear elliptic problem,

(Aw − bu(v)w, v) = (r, v), for all v ∈ H1
0 (Ω).

We proved that ‖w‖2 ≤ C‖r‖0 (see Lemma 3.2) with a uniform constant C. Then the following
error estimate is standard

‖ψ − Ihw‖1 ≤ Ch‖w‖2 ≤ Ch‖r‖0.
Here, Ih is the nodal interpolation operator. Using the well-known inverse inequality for finite
element functions, (valid since we have assumed a quasi-uniform mesh), (Ω ⊂ Rd, d = 2, 3),

‖ψ − Ihw‖∞ ≤ C| log h|1− 1

dh1−
d
2 ‖ψ − Ihw‖1,

one gets

‖ψ‖∞ ≤ ‖w‖∞ + ‖ψ − Ihw‖∞
≤ C‖w‖2 + C(| log h|1− 1

dh1−
d
2 )‖ψ − Ihw‖1

≤ C‖w‖2 + C(| log h|1− 1

dh1−
d
2 )h‖w‖2

≤ C‖w‖2
≤ C‖r‖0.

¤

4. Verifying assumptions (A1)–(A3)

Next we verify the main assumptions (A1), (A2), and (A3) of 2.1. We first note that assump-
tion (A1) was verified in Lemma 3.1.

To verify (A2) it is equivalent to prove the following lemma.

Lemma 4.1. For any ϕ ∈ Vh, the following estimate holds

(Fh(v)− Fh(u
?
h)− F

′

h(u
?
h)(v − u?

h), ϕ) ≤ γ‖u?
h − v‖∞‖ϕ‖0.

if ‖v − u?
h‖ < δ and δ is sufficiently small.
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Proof. One has,

(Fh(v)− Fh(u
?
h)− F

′

h(u
?
h)(v − u?

h), ϕ) = (−b(x, v) + b(x, u?
h)− bu(u

?
h)(u

?
h − v), ϕ)

≤ L‖u?
h − v‖∞‖u?

h − v‖0‖ϕ‖0
≤ L‖u?

h − v‖∞ CF ‖u?
h − v‖1‖ϕ‖0

≤ γ‖u?
h − v‖1‖ϕ‖0.

which can be ensured if given δ sufficiently small. ¤

Lemma 4.2. The term

µ = sup
r∈L2(Ω)

max{‖(F ′

h(v))
−1Qhr‖1, ‖(F ′

h(v))
−1Qhr‖∞}

‖r‖0
is uniformly bounded in terms of h 7→ 0 for v ∈ Vh such that ‖v − u?

h‖ ≤ δ.

Proof. This result follows from Lemma 3.3. ¤

This verifies estimate (2.2) in (A3). The remaining part of (A3) requires continuity of the
derivatives and of their inverses. We show the equivalent estimates:

Lemma 4.3. For any w ∈ Vh,

(4.1) ‖(F ′

h(u
?
h)− F

′

h(v))w‖0 ≤ γ‖F ′

h(v)w‖0,
and

(4.2) ‖((F ′

h(u
?
h))

−1 − (F
′

h(v))
−1)w‖ ≤ γ‖(F ′

h(u
?
h))

−1w‖,
if v ∈ Vh is such that ‖u?

h − v‖ < δ for δ sufficiently small.

Proof. Given w ∈ L2(Ω), let ph ∈ Vh and qh ∈ Vh solve the linear problems,

(F
′

h(u
?
h)qh, ϕ) = (w, ϕ), for all ϕ ∈ Vh,

and

(F
′

h(v)ph, ϕ) = (w, ϕ), for all ϕ ∈ Vh.

Note that ph solves the problem,

(F
′

h(u
?
h)ph, ϕ) = (w, ϕ)− ((bu(u

?
h)− bu(v))ph, ϕ), for all ϕ ∈ Vh.

Therefore, the difference ph − qh solves the problem

(F
′

h(u
?
h)(ph − qh), ϕ) = −((bu(u?

h)− bu(v))ph, ϕ), for all ϕ ∈ Vh.

Therefore, based on Lemma 3.3 one has the uniform bound

max{‖ph − qh‖1, ‖ph − qh‖∞} ≤ C‖(bu(u?
h)− bu(v))ph‖0

≤ CL‖u?
h − v‖∞‖ph‖0

≤ CL‖u?
h − v‖∞‖ph − qh‖+ CL‖u?

h − v‖∞‖qh‖0
≤ δ‖ph − qh‖+ CL‖u?

h − v‖∞‖qh‖.
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This verifies (4.2):

‖
(
(F

′

h(u
?
h))

−1 − (F
′

h(v))
−1
)
w‖ ≤ C

1−δ
‖u?

h − v‖∞‖(F ′

h(u
?
h))

−1w‖
≤ γ‖(F ′

h(u
?
h))

−1w‖,
if CL‖u?

h − v‖∞ ≤ CLδ < 1, which is the case if ‖u?
h − v‖∞ < δ is sufficiently small.

For (4.1) one proceeds as follows,

(F
′

h(u
?
h)w − F

′

h(v)w, ψ) = −((bu(u?
h)− bu(v))w, ψ)

≤ L‖u?
h − v‖∞‖w‖0‖ψ‖0

≤ L‖u?
h − v‖∞ µ ‖F ′

h(v)w‖0 ‖ψ‖0.
In the last line we used (the verified) estimate (2.2). That is,

‖F ′

h(u
?
h)w − F

′

h(v)w‖0 ≤ L‖u?
h − v‖∞µ‖F

′

h(u
?
h)w‖0 ≤ γ‖F ′

h(v)w‖0,
if ‖u?

h − v‖∞ is sufficiently small and this verifies (4.1). ¤

Note that the estimates in Lemma 4.3 are equivalent to the ones listed in (A3) (simply let

w : =
(
F

′

h(v)
)−1

w in (4.1) and w : = F
′

h(u
?
h)w in (4.2)).

5. Application to Inexact Newton–Multigrid algorithms

In this section we consider MG solution algorithms for computing the inexact Newton direc-
tion. A modified inexact Newton–MG algorithm starting with v0 close enough to u?

h requires
finding sk = ξ ∈ Vh such that

F
′

h(v
0)ξ = −Fh(v

k) + rk, where ‖rk‖0 ≤ η‖Fh(v
k)‖0,

and then setting vk+1 = vk + ξ.
For a properly chosen ξ ∈ Vh, we need an estimate of the form,

(5.1) |(Aξ − bu(v)ξ + Av̂ − b(x, v̂)− f, ϕ)| ≤ η ‖Av̂ − b(x, v̂)− f‖0‖ϕ‖0, for all ϕ ∈ Vh,

uniformly in v̂ with v ∈ Vh close enough to u?
h. In our application v = v0 and v̂ = vk.

Let ξ̂ ∈ Vh be the solution of the following discrete linear problem,

(5.2) (Aξ̂ − bu(v)ξ̂, ϕ) = −(Av̂ − b(x, v̂)− f, ϕ), for all ϕ ∈ Vh.

Next we consider three MG algorithms for computing the inexact Newton directions sk = ξ.

V–cycle MG. We first use a MG procedure that produces computationally inexpensive ξ close

to ξ̂ based on few (m ≥ 1) V–cycle steps applied to the linear problem (5.2). The following
MG V–cycle convergence estimate is well–known (note that we have assumed bu(v) ≤ 0 which
implies positive definiteness of A− bu(v))

((Aξ̂ − bu(v))(ξ̂ − ξ), ξ̂ − ξ) ≤ qm ((A− bu(v))ξ̂, ξ̂).

Here, q ∈ (0, 1) stands for the convergence factor of the V–cycle MG, and ξ = ξm is the mth
iterate (ξ0 = 0). In the present setting q is independent of h 7→ 0.
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Since, ξ̂ solves the above linear problem, the following a priori estimate holds,

((A− bu(v))ξ̂, ξ̂) ≤ C‖Av̂ − b(x, v̂)− f‖20, C =
CF

a0
.

Combining the last two estimates one ends up with

((A− bu(v))(ξ̂ − ξ), ξ̂ − ξ) ≤ qmC‖Av̂ − b(x, v̂)− f‖20.
The desired estimate (5.1) can be rewritten as

|(A(ξ − ξ̂)− bu(v)(ξ − ξ̂), ϕ)| ≤ η ‖Av̂ − b(x, v̂)− f‖0‖ϕ‖0.
We have, with B = A− bu(v) and w = ξ̂ − ξ, using the inverse estimate ‖ϕ‖1 ≤ Ch−1‖ϕ‖0,

(Bw, ϕ) ≤ (Bw, w)
1

2 (Bϕ, ϕ)
1

2

≤ C(
√
q)m‖Av̂ − b(x, v̂)− f‖0(Bϕ, ϕ)

1

2

≤ C(
√
q)m‖Av̂ − b(x, v̂)− f‖0‖ϕ‖1

≤ C(
√
q)m‖Av̂ − b(x, v̂)− f‖0 h−1‖ϕ‖0

which is the desired estimate (5.1) with η = Cq
m
2 h−1.

A mesh independent bound for η can generally be achieved if the number of MG V–cycles is
m = O(log 1

h
). This leads to a nearly optimal method.

Cascadic MG cycle. Alternatively, one can use a full MG, which provides approximation ξ

to ξ̂ of order h (that is, of order of the discretization error) then one can get
√
qmh−1 uniformly

bounded in terms of h and hence ensure a η < 1 in optimal complexity, cf., e.g., Shaidurov [14]
and Bornemann and Deuflhard [6] for a cascadic version of the full MG. The following estimates
are valid, for the cascadic multigrid, which involves smoothing using νk CG iterations at grid k,
where νk ' 2β(`−k)ν, k = 0 is coarsest level, ` > 0 is the finest mesh level, (for properly chosen
β = βk to ensure optimal complexity)

‖ξ − ξ̂‖1 ≤ Ch
1

2ν + 1
‖Bξ̂‖0.

Then, as above, ((Bw, w) ≤ C‖w‖21), with w = ξ − ξ̂

(Bw, ϕ) ≤ (Bw, w)
1

2 (Bϕ, ϕ)
1

2

≤ Ch 1
2ν+1

‖Bξ̂‖0‖ϕ‖1
≤ Ch 1

2ν+1
‖Av̂ − b(x, v̂)− f‖0‖ϕ‖1

≤ Ch 1
2ν+1

‖Av̂ − b(x, v̂)− f‖0‖ϕ‖1
≤ Ch 1

2ν+1
‖Av̂ − b(x, v̂)− f‖0 h−1‖ϕ‖0

≤ C 1
2ν+1

‖Av̂ − b(x, v̂)− f‖0 ‖ϕ‖0.
We formulate then the first result.

Theorem 5.1. Let Assumption 3.1 (i)–(iv) hold. For η and t such that 0 < η < t < 1 there is
an ε > 0 and a h0 > 0 such that for any h < h0 the following is true:
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• The family of discrete operators {F ′

h(v)} for v ∈ H1
0 (Ω) and ‖v − u?‖ < ε has uniformly

bounded inverses (as operators from Vh, ‖ · ‖ = max{‖ · ‖1, ‖ · ‖L∞
} to Vh, ‖.‖0); that is,

for a constant µ = µ(h0, ε) one has ‖
(
F

′

h(v)
)−1 ‖ ≤ µ. This implies that Algorithm 2.1

is feasible.
• For any initial iterate u0h ∈ Vh such that µ‖F ′

h(u
?
h)(u

0
h−u?

h)‖0 < ε and ‖u0h−u?
h‖ < ε, the

sequence of iterates uk
h generated by the modified inexact Newton method from Algorithm

2.1 (F = Fh), where the inexact Newton directions s
k = ξ are computed via the cascadic

MG, converges in ‖ · ‖ = max{‖ · ‖1, ‖ · ‖L∞
} to u?

h.
• The convergence is linear in the sense that

‖uk
h − u?

h‖ ≤ µ‖F ′

h(u
?
h)
(
uk
h − u?

h

)
‖0 ≤ tk µ ‖F ′

h(u
?
h)
(
u0h − u?

h

)
‖0 ≤ tk ε.

In addition the cost per iteration is optimal; that is, proportional to the number of unknowns
(degrees of freedom in Vh). Finally, the assumption that one can choose the initial iterate u

0
h,

as indicated above, is feasible and we provide a constructive (practical) algorithm to compute it.

Proof. The uniform boundedness of the inverses F
′

h(v) is Lemma 4.2. It is clear then (based
on Lemmas 3.1, 4.1 and 4.3) that one can choose h0 and ε sufficiently small such that for any
h < h0 if ‖v − u?

h‖ < ε the Assumption 2.1 can be guaranteed and Theorem 2.1 will show the
desired convergence if we can also guarantee that the estimate

µ ‖F ′

h(u
?
h)
(
u0h − u?

h

)
‖ ≤ ε,

is feasible uniformly in h 7→ 0.
One can (theoretically) choose u0h close to u?

h such that

µ‖F ′

h(u
?
h)(u

0
h − u?

h)‖0 ≤ δ ‖F ′

h(u
?
h)u

?
h‖0

for any given small δ > 0 (see estimate (5.5)). Theoretically, this means that if one knew the
right hand side g of the problem F

′

h(u
?
h)u

?
h = g and the actions of the linear operator F

′

h(u
?
h)

were computationally available, one could have chosen u0h as an approximation to u?
h obtained

by our MG cycle. The question then is if ‖F ′

h(u
?
h)u

?
h‖0 will stay bounded when u?

h 7→ u? (that
is, when h 7→ 0). We have, (noting that on Vh, F

′

h(u
?
h) = QhF

′

(u?
h))

‖F ′

h(u
?
h)u

?
h‖0 ≤ ‖QhF

′

(u?
h)(u

?
h − u?)‖0 + ‖QhF

′

(u?
h)u

?‖0
≤ ‖bu(u?

h)‖∞‖u?
h − u?‖0 + ‖QhA(u

? − u?
h)‖0 + ‖Au?‖0 + ‖bu(u?

h)‖∞‖u?‖0
≤ C‖u?‖2 + ‖QhA(u

? − u?
h)‖0.

The only thing that remains to be seen is that ‖QhA(u
? − u?

h)‖0 stays bounded. It is easy to
see that ‖QhA(u

? − u?
h)‖0 ≤ C‖u?‖2. Indeed, for any ψ ∈ L2(Ω), using the H1–boundedness of

A and an inverse inequality for Qhψ ∈ Vh, one has

(QhA(u
? − u?

h), ψ) = (A(u? − u?
h), Qhψ)

≤ a1‖u? − u?
h‖1 ‖Qhψ‖1

≤ Ch ‖u?‖2 Ch−1‖ψ‖0
≤ C‖u?‖2‖ψ‖0.
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In practice, the actions of F
′

h(u
?
h) and the r.h.s. g are not available, but one can instead use

their coarse approximations. More specifically let define H such that H < h0 (but independent
of h 7→ 0). Solve the discrete nonlinear problem FH(u

?
H) = 0 in the corresponding coarse

finite element space VH . Consider then the following (fine–grid) linear problem (note that
u?
H ∈ VH ⊂ Vh)

(5.3) ((A− bu(u
?
H))u

?
h, ϕ) = (g, ϕ) ≡ (f + b(u?

H)− bu(u
?
H)u

?
H , ϕ), for all ϕ ∈ Vh.

This problem approximates the problem Fh(u
?
h) = 0 which rewritten reads,

(F
′

h(u
?
H)u

?
h, ϕ) = (f + b(u?

h)− bu(u
?
H)u

?
h, ϕ), for all ϕ ∈ Vh.

Since the difference u?
h − u?

h solves

(F
′

h(u
?
H)(u

?
h − u?

h), ϕ) = (b(u?
H)− b(u?

h)− bu(u
?
H)(u

?
H − u?

h), ϕ), for all ϕ ∈ Vh,

one gets the estimate

(F
′

h(u
?
H)(u

?
h − u?

h), ϕ) ≤ L‖u?
H − u?

h‖∞‖u?
H − u?

h‖0‖ϕ‖0.
That is,

‖(F ′

h(u
?
H)(u

?
h − u?

h)‖0 ≤ L‖u?
H − u?

h‖∞‖u?
H − u?

h‖0.
Now, since h < H < h0 the error estimates from Lemma 3.1 hold. Therefore,

(5.4) ‖(F ′

h(u
?
H)(u

?
h − u?

h)‖0 ≤ CH1+α‖u?‖22.
Let finally u0h be an approximation to u?

h obtained by our MG algorithm applied to (5.3). Note
that u0h is computationally available and computed in optimal cost. We have the convergence
estimate of the cascadic MG cycle,

‖F ′

h(u
?
H)(u

?
h − u0h)‖0 ≤ C

1

2ν + 1
‖g‖0 = C

1

2ν + 1
‖f + b(u?

H)− bu(u
?
H)u

?
H‖0.

The final estimate we need reads (note that ‖u?
H − u?

h‖ ≤ CH1+α‖u?‖2 < ε hence (2.10) holds
with a γ < 1):

‖F ′

h(u
?
h)(u

?
h − u0h)‖0 ≤ (1 + γ)‖F ′

h(u
?
H)(u

?
h − u0h)‖0

≤ 2
[
‖F ′

h(u
?
H)(u

?
h − u?

h)‖0 + ‖F
′

h(u
?
H)(u

?
h − u0h)‖0

]

≤ 2
[
CH1+α‖u?‖22 + C 1

2ν+1
‖f + b(u?

H)− bu(u
?
H)u

?
H‖0

]

≤ ε
µ
,

which can be ensured if both H and 1
2ν+1

are sufficiently small. We again note that H and hence
u?
H depend only on η and t, hence the terms that involve u?

H can be considered fixed (for fixed
η and t). ¤

In [11] the cascadic MG has been extended for semi–linear elliptic PDEs of the form we

considered. It provides approximation of order h starting from a coarse grid H = O(
√
h) and at

every finer level one solves the corresponding linearized problem with geometrically decreasing
number of CG iterations using the interpolated final iterate from the previous coarse mesh as
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an initial iterate for the CG method. Early results on multilevel inexact Newton methods in
the form of nested iteration or cascadic iteration are found in [5].

Remark 5.1. Note that our coarse mesh size H used in the proof of Theorem 5.1 is fixed
(independent of h 7→ 0). If one makes it mesh dependent (e.g., as in [15], [3] and [11]) then
strictly speaking one does not really have control on the cost.

W–cycle MG. Finally, if one uses W–cycle MG with sufficiently many smoothing iterations
ν ≥ 1 the following L2 reduction of the MG residual can be proved based on well–known
arguments (see Appendix II):

(5.5) ‖A(ξ − ξ̂)− bu(v)(ξ − ξ̂)‖0 ≤ C
1

1 + ν
‖Av̂ − b(x, v̂)− f‖0.

This is exactly our desired estimate (5.1) with a mesh-independent η = C 1
1+ν

< 1.
We summarize:

Theorem 5.2. Let Assumption 3.1 (i)–(iv) hold. For η and t such that 0 < η < t < 1 there is
an ε > 0 and a h0 > 0 such that for any h < h0 the following is true:

• The family of discrete operators {F ′

h(v)} for v ∈ H1
0 (Ω) and ‖v − u?‖ < ε has uniformly

bounded inverses (as operators from Vh, ‖ · ‖ = max{‖ · ‖1, ‖ · ‖L∞
} to Vh, ‖.‖0); that is,

for a constant µ = µ(h0, ε) one has ‖
(
F

′

h(v)
)−1 ‖ ≤ µ. This implies that Algorithm 2.1

is feasible.
• For any initial iterate u0h ∈ Vh such that µ‖F ′

h(u
?
h)(u

0
h−u?

h)‖0 < ε and ‖u0h−u?
h‖ < ε, the

sequence of iterates uk
h generated by the modified inexact Newton method from Algorithm

2.1 (F = Fh), where the inexact Newton directions s
k = ξ are computed via the W–

cycle MG with sufficiently many smoothing steps (depending only on ε), converges in
‖ · ‖ = max{‖ · ‖1, ‖ · ‖L∞

} to u?
h.

• The convergence is linear in the sense that
‖uk

h − u?
h‖ ≤ µ‖F ′

h(u
?
h)
(
uk
h − u?

h

)
‖0 ≤ tk µ ‖F ′

h(u
?
h)
(
u0h − u?

h

)
‖0 ≤ tk ε.

In addition the cost per iteration is optimal; that is, proportional to the number of unknowns
(degrees of freedom in Vh). Finally, the assumption that one can choose the initial iterate u

0
h as

indicated above is feasible and we provide a constructive (practical) algorithm to compute it.

Proof. We omit the proof of this second result as it is essentially the same as for Theorem 5.1. ¤

6. Numerical illustration

In this section, we illustrate the results of the previous section on two test problems. The first
problem is covered by our theoretical results, while the second is not. However, the numerical
results suggest that the theory is true more generally, and we make some concluding remarks
regarding extensions in the following section. We have tested the following nonlinear second
order elliptic PDEs:
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Problem 1:

−∆u− b(u) = f(x, y), (x, y) ∈ Ω = (0, 2)× (0, 1),

subject to homogeneous Dirichlet boundary conditions (u = 0 on ∂Ω). The nonlinear
function was

−b(u) =
{
e−uu3, u ≥ 0,
0, u < 0.

Problem 2:

−∇(a(u)∇u)− b(u) = f(x, y), (x, y) ∈ Ω = (0, 2)× (0, 1),

subject to homogeneous Dirichlet boundary conditions (u = 0 on ∂Ω). The nonlinear
functions were

a(u) =
1√
ε+ u2

, ε = 0.001, b(u) =

{
e−uu3, u ≥ 0,
0, u < 0.

In all cases, the right–hand side f was chosen to match the exact solution

u? = 10ψ(x) y(1− y), where ψ(x) =

{
x2(1− x)2, x ∈ [0, 1],
(x− 1)2(2− x)2, x ∈ [1, 2].

The discrete problems are obtained by using bilinear basis functions on rectangular elements of
mesh size h = 1

32
, 1
64
, 1
128
, 1
256

. The coarsening is based on element agglomeration which leads
to an algebraic multigrid (AMGe) which for the model uniform rectangular mesh and smooth
PDE coefficients performs pretty much like a standard geometric multigrid. We have chosen
the r.h.s. of the discrete problems such that the exact discrete solution u?

h matches u? pointwise
at the mesh points. Thus we know exactly the discrete solution and can measure the algebraic
error uk

h − u?
h in various norms.

In the nonlinear iterations we have selected initial iterates u0h = 10(2θ−1)u?
h, for θ = θ(x) being

random numbers in [0,1]. We tested the performance of the inexact Newton–MG with V –cycle
MG for solving the linearized systems. Since the V–cycle showed optimal mesh–independent
convergence, it is clear that the W-cycle and the cascadic MG will lead to the same result. In
Table 1, and Table 2, we show the number of nonlinear iterations required to achieve `2–residual
error reduction by a factor 10−12 for Problem 1 and 10−6 for Problem 2, total number of linear
iterations (i.e., number of V–cycles) and the algebraic errors uk

h − u?
h, (here k stands for the

final nonlinear iterate) in three norms, maximum, `2 and `2–residual norm which are discrete
counterparts of the continuous L∞ and L2 norms. It is clear from the tables that convergence
is mesh independent and of optimal cost for the inexact Newton MG method. In Problem 2,
the Jacobian F

′

h(u
k
h)v for v ∈ V has been approximated by the linear operator corresponding

to the bilinear form (a(uk
h)∇v, ϕ) − (bu(u

k
h)v, ϕ) for all ϕ ∈ V . Note that this gives rise to

a symmetric positive definite matrix which does not pose additional difficulties to a standard
multigrid. This approximation to the true (discrete) Jacobian gives rise to one more level of
inexactness in the inexact Newton method we consider. In Fig. 1 one can see the almost linear
convergence of the inexact Newton MG method in the `2-residual-norm and a bit faster than
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Table 1. Convergence of inexact Newton–MG for Problem 1; number of non-
linear iterations, total number of linear iterations and the algebraic errors uk

h−u?
h.

h−1
nonlinear
iterations

total number of
linear iterations

max–error `2–residual error `2–error

32 5 14 1.137573e-11 9.873159e-11 7.467105e-12
64 5 15 9.253515e-12 7.853968e-11 6.083558e-12
128 4 12 1.773736e-09 1.548300e-08 1.192745e-09
256 4 12 1.163052e-09 1.119520e-08 7.184886e-10

Table 2. Convergence of inexact Newton–MG for Problem 2; number of non-
linear iterations, total number of linear iterations and the algebraic errors uk

h−u?
h.

h−1
nonlinear
iterations

total number of
linear iterations

max–error `2–residual error `2–error

32 9 27 1.722173e-05 3.345141e-03 5.257332e-06
64 8 24 1.067139e-04 1.980442e-02 3.410634e-05
128 7 21 5.370777e-04 9.792177e-02 1.826281e-04
256 7 21 6.083837e-04 1.113324e-01 2.077409e-04

linear convergence in maximum and `2-norm. Finally, we mention that we have implemented
the more traditional version of the inexact Newton MG method (see Corollary 2.1).

1 2 3 4 5 6 7 8
−12

−10

−8

−6

−4

−2

0

2

4

6
max−error
l2−error
l2−residual−error

Figure 1. Plot of the logarithm of the errors versus the number of iterations;
h−1 = 64; Problem 2.
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7. Concluding remarks

The full regularity for the simple model case is not essential (if we give up convergence in
L∞). It may be more adequate if one considers the following more general nonlinear elliptic
operator,

Lu = − div(A(x)∇u+ a(x, u))− b(x, u).

Here, in addition to the previous coefficients A(x) = (aij(x))
d
i,j=1 and b(x, u) we have the

nonlinear vector function a(x, u) = (ai(x, u))
d
i=1. Hence, divA(x)∇u =

∑
i

∂
∂xi

(
∑
j

aij(x)
∂u
∂xj

)

and div a(x, u) =
d∑

i=1

[
∂ai(x, u)

∂xi
+ ∂ai

∂u
(x, u) ∂u

∂xi

]
. We remark, that the analysis should translate in

a straightforward manner to the above more general nonlinear operator under the assumptions
that the nonlinear PDE has a unique solution u ∈ H2(Ω) ∩H1

0 (Ω), appropriate smoothness of
the coefficients ai(x, u), proper sign of the derivatives of a and b which guarantee coercivity
of the linearized operator, and using W–cycle MG with sufficiently many smoothing steps for
computing the inexact Newton directions. Also, as is well–known, the linear finite element
problems associated with the discrete Jacobians may require a sufficiently fine coarse mesh in
order to have a stable discretization.

Finally, it should be possible to extend the results presented here to problems involving
nonlinearities associated with the leading second order term, for example − divA∇u with A =
A(., u). However, these problems require more sophisticated Lp–error estimates, (cf., [7] or [15],
and earlier in [9]) and also require, in general, higher regularity or smoothness of the solution
(see [15] and also [8]).

Appendices

Appendix I: Existence and error estimates of the discrete solution. Such results are
found in many papers, see, e.g., Xu [15] (see also Chapter 7.7 of [7]). The main construction is
as follows. Let Ph : H2(Ω) ∩H1

0 (Ω) 7→ Vh be the projection with respect to the linear operator
A− bu(u). That is, v 7→ Phv is computed by solving the linear finite element problem,

((A− bu(u))Phv, ϕ) = ((A− bu(u))v, ϕ), for all ϕ ∈ Vh.

We use the fact that Ph has certain approximation properties, namely, we have ‖u− Phu‖∞ ≤
Chα‖u‖2 for some α > 0 and ‖u− Phu‖1 ≤ Ch‖u‖2.

Recall that in our application we use the norm ‖ · ‖ = max{‖ · ‖1, ‖ · ‖∞}.
Consider the following ball,

B = {ψ ∈ Vh : ‖ψ − Phu‖∞ ≤ hα, ‖ψ − Phu‖1 ≤ h}.
Let Φ : B 7→ Vh be the nonlinear mapping defined by ψ ∈ Vh 7→ Φ(ψ) as the solution of the
problem,

((A− bu(u))Φ(ψ), ϕ) = ((A− bu(u))u, ϕ)−R(u; ψ, ϕ), for all ϕ ∈ Vh.
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Here, R(u; ψ, ξ) is the residual form coming from the Taylor series F (ψ) = F (u) + F
′

(u)(ψ −
u) + . . . , in a variational form, that is,

R(u; ψ, ξ) = (Aψ − b(ψ), ξ)− (Au− b(u), ξ)− ((A− bu(u))(ψ − u), ξ).

It is clear that Φ(ψ) is continuous. One has,

R(u; ψ, ξ)−R(u; θ, ξ) = −(b(ψ)− b(θ)− bu(u)(ψ − θ), ξ)
≤ Cmax{‖ψ − Phu‖∞, ‖θ − Phu‖∞, ‖u− Phu‖∞}‖ψ − θ‖ · ‖ξ‖0.

Hence, since Φ(ψ)− Φ(θ) solves

((A− bu(u))(Φ(ψ)− Φ(θ)), ϕ) = −R(u; ψ, ϕ) +R(u; θ, ϕ),

based on Lemma 3.3, the Lipschitz continuity of Φ (on B) follows,

‖Φ(ψ)− Φ(θ)‖ ≤ Chα‖ψ − θ‖.

We used the following estimates for R(·; ·, ·),

R(u; ψ, ξ) = −(b(ψ)− b(u)− bu(u)(ψ − u), ξ) ≤ L‖ψ − u‖∞‖ψ − u‖0‖ξ‖0.

Then for ψ ∈ B, using the approximation property of Ph on u, and the triangle inequality
‖ψ − u‖ ≤ ‖ψ − Phu‖+ ‖u− Phu‖ ≤ Chα, imply

|R(u; ψ, ξ)| ≤ Ch2α‖ξ‖0.

Note that Φ(ψ)− Phu solves the problem,

((A− bu(u))(Φ(ψ)− Phu), ϕ) = −R(u; ψ, ϕ), for all ϕ ∈ Vh.

The latter implies, based on Lemma 3.3,

‖Φ(ψ)− Phu‖ ≤ C sup
ξ∈Vh

|R(u; ψ, ξ)|
‖ξ‖0

≤ Ch1+α < h.

That is, Φ(B) ⊂ B and Brouwer’s fixed-point theorem implies existence of solution u?
h = Φ(u?

h)
of the discrete nonlinear problem,

(Au?
h − b(u?

h), ϕ)− (Au− b(u), ϕ) = 0, for all ϕ ∈ Vh.

This is true since, the above identity is equivalent to ((A − bu(u))(u − u?
h), ϕ) = R(u; u?

h, ϕ)
and the latter on the other hand is the definition of Φ(u?

h) = u?
h.

The error estimate is readily obtained using the approximation property of Ph and the fact
that u?

h ∈ B. One has,

‖u− u?
h‖1 ≤ ‖u− Phu‖1 + ‖Phu− u?

h‖1 ≤ Ch‖u‖2 + h ≤ Ch.

Similarly, one gets ‖u− u?
h‖∞ ≤ Chα.



CONVERGENCE OF AN INEXACT NEWTON–MULTIGRID ALGORITHM 21

Appendix II: Multigrid residual convergence. This result is proved based on well–known
facts; namely, an approximation property and a smoothing property, (cf. Hackbusch [12] or
Brenner and Scott [7]). Typically, though the convergence of MG is studied in energy norm (or
‖ · ‖1). Here, for completeness, we show a two–grid convergence result for the residual iteration
matrix in L2 (which is (A.,A.) or energy–square norm convergence of the iterates). Then, as is
well–known, by perturbation analysis, a W–cycle MG convergence follows assuming sufficiently
many smoothing steps.

Let Ah = A − bu(v) be the discrete Jacobian F
′

h(v). Let also V2h ⊂ Vh be a coarse finite
element space. Here we show that under the assumed H2–regularity, a standard two–grid
algorithm applied to

(Ahξh, ϕ) = (r, ϕ), for all ϕ ∈ Vh,

gives iterates ξ = ξTG such that

‖Ah(ξh − ξ)‖0 ≤ C
1

1 + ν
‖r‖0,

where ν is the number of smoothing iterations. That is, the L2–norm of the initial residual
r (initial iterate is zero) is reduced with a factor that can be made arbitrarily small if ν is
sufficiently large. Then, as is well–known, a W–cycle MG will have asymptotically the same
property (for sufficiently many smoothing iterations).

Consider a standard smoothing iteration matrix I − ωAh, where ω ' O(‖Ah‖−1) ' O(h2)
and ω ≤ ‖Ah‖−1 or slightly more general, a symmetric positive definite matrix M , such that
(Ahφ, φ) ≤ (Mφ, φ) for all φ ∈ Vh, ‖M‖0 ' h−2 and cond(M) = O(1). A two–grid algorithm
has the following iteration matrix that relates the resulting residual rTG = Ah(ξh− ξTG) and the
initial residual r,

rTG = (I − AhM
−1)ν(I − AhP (A2h)

−1P T )r.

Here, P T = Q2h is the restriction from Vh to V2h (Q2h is the L2–projection onto V2h). Then
P = I on V2h (since V2h ⊂ Vh). Hence, A2h = P TAhP = Q2hAh.

Using duality and based on the full regularity the following approximation property holds (cf.,
e.g., [12]):

(7.1) ‖
(
(Ah)

−1 − P (A2h)
−1P T

)
r‖0 ≤ Ch2‖r‖0

We show an estimate of the form,

‖rTG‖0 ≤ C
1

1 + ν
‖r‖0.
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Based on the formula for the TG residual iteration matrix and using the approximation property
(7.1) and the properties of M , the following inequalities are straightforward,

‖rTG‖0 ≤ ‖(I − AhM
−1)νAhM

−1‖0 · ‖M‖0 · ‖
(
(Ah)

−1 − P (A2h)
−1P T

)
r‖0

≤ ‖M− 1

2 (I − AhM
−1)νAhM

− 1

2‖0 · cond(M
1

2 ) · ‖M‖0 · ‖((Ah)
−1 − P (A2h)

−1P T )r‖0
= ‖(I −M− 1

2AhM
− 1

2 )νM− 1

2AhM
− 1

2‖0 · cond(M
1

2 )·
‖M‖0 · ‖

(
(Ah)

−1 − P (A2h)
−1P T

)
r‖0

≤ max
t∈[0, 1]

{(1− t)νt} · cond(M 1

2 ) · Ch−2 Ch2‖r‖0

≤ C
1

1 + ν
‖r‖0.

Here, we used also the fact that the eigenvalues of the symmetric operator M− 1

2AhM
− 1

2 are
contained in [0, 1].
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